A novel C-terminal motif is necessary for the export of the vasopressin V1b/V3 receptor to the plasma membrane.

نویسندگان

  • Jessica Robert
  • Eric Clauser
  • Patrice Xavier Petit
  • Maria Angeles Ventura
چکیده

Little is known about endoplasmic reticulum (ER) export signals, particularly those of members of the G-protein-coupled receptor family. We investigated the structural motifs involved in membrane export of the human pituitary vasopressin V1b/V3 receptor. A series of V3 receptors carrying deletions and point mutations were expressed in AtT20 corticotroph cells. We analyzed the export of these receptors by monitoring radioligand binding and by analysis of a V3 receptor tagged with both green fluorescent protein and Myc epitopes by a novel flow cytometry-based method. This novel method allowed us to quantify total and membrane-bound receptor expression. Receptors lacking the C terminus were not expressed at the cell surface, suggesting the presence of an export motif in this domain. The distal C terminus contains two di-acidic (DXE) ER export motifs; however, mutating both these motifs had no effect on the V3 receptor export. The proximal C terminus contains a di-leucine (345)LL(346) motif surrounded by the hydrophobic residues Phe(341), Asn(342), and Leu(350). The mutation of one or more of these five residues abolished up to 100% of the receptor export. In addition, these mutants colocalized with calnexin, demonstrating that they were retained in the ER. Finally, this motif was sufficient to confer export properties on a CD8alpha glycoprotein-V3 receptor chimera. In conclusion, we have identified a novel export motif, FN(X)(2)LL(X)(3)L, in the C terminus of the V3 receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of cell-surface rerouting of an endoplasmic reticulum-retained mutant of the vasopressin V1b/V3 receptor by a pharmacological chaperone.

Cell-surface expression and biological functions of several intracellular-retained G protein-coupled receptors are restored by membrane-permeable ligands called pharmacological chaperones. We have previously demonstrated that a mutation of the hydrophobic motif 341FNX2LLX3L350 in the C terminus of the human pituitary vasopressin V3 receptor (MUT V3R) led to it being retained in the endoplasmic ...

متن کامل

Copeptin,as a new Boimarker

everything that disturbs the homeostatic balance of the body can be defined as stress and any stress factor activating the hypothalamic- pituitary-adrenal (HPA) axis causes an increase in arginine vasopressin (AVP) plasma concentrations. AVP is a 9 amino acid peptide in the ring structure and derived from pre-pro vasopressin. Pre-pro vasopressin is a pro hormone that synthesized by supraoptic ...

متن کامل

Gene and cDNA cloning and characterization of the mouse V3/V1b pituitary vasopressin receptor.

The gene of the mouse V3/V1b receptor was identified by homology cloning. One of the genomic clones contained the entire coding sequence. The cDNA presented high identity with rat (92%) and human (84%) sequences. Southern blot analysis indicated the existence of a single gene. Tissue distribution was studied by RT-PCR. The major site of expression was the pituitary. A faint signal was also pres...

متن کامل

The Effect of Aspartate-Lysine-Isoleucine and Aspartate-Arginine-Tyrosine Mutations on the Expression and Activity of Vasopressin V2 Receptor Gene

Background: Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 3  شماره 

صفحات  -

تاریخ انتشار 2005